
Artificial Stupidity: A Reply

Murphy, Koehler, and Fogler [1997] gave in the last

issue of the Journal of Portfolio Management an account of

how to raise a neural net’s IQ. The purpose of this reply is

to point out some of the general difficulties with neural nets.

Also, I would like to mention an alternative method, namely

Pade approximants, which does not suffer from these

difficulties.

Murphy, Koehler, and Fogler [1997] document that

even approximating a rather simple nonlinear function in

one dimension through neural nets requires a considerable

amount of fine-tuning. In particular, they are faced with a

time-consuming and complex algorithm where a number of

rather delicate parameters have to be iteratively adjusted in

order to yield an acceptable neural net. A considerable

caveat is also that the available data has to be split further

into a training set (40 values in their example) and a holdout

set (160 values). Different neural nets are constructed using

the training set and then tested against the holdout set. This

methodology is inherently flawed since it amounts to an in-

sample test. A true out-of-sample procedure would require

1

to use only the training set, decide on the best model, and

then check that model once against the holdout set. Given

the rather poor fit of their neural nets on the boundaries,

even for their best model, the true out of sample

performance is questionable at best.

But at times going back to the basics can yield

superior results. Murphy, Koehler, and Fogler [1997] rightly

notice that a polynomial fit does poorly. However, even a

standard reference work such as “Numerical Recipes”, Press

et al. [1992, pp. 104-107, 194-201], suggests Pade

approximants (also known as rational functions

approximation) as the method of choice for nonlinear

relations. The idea is to approximate the unknown function

by the ratio of two polynomials:

f x
a a x a x a x

b x b x b x
m

m

n
n

()
...

...
=

+ + + +
+ + + +

0 1 2
2

1 2
21

(1)

We can rewrite equation 1 slightly and immediately

see that the following system of equations can be

conveniently solved by Ordinary Least Squares algorithms:

2

f x a a x a x a x b xf x b x f x b x f xm
m

n
n() ... () () ... ()= + + + + − − − −0 1 2

2
1 2

2

(2)

The only choice parameters here are the number of

terms, m and n. The easiest is to start with m=n=0 and

increase those values if the fit is insufficient. A useful tool is

to check for poles where f(x) goes to ±∞. We often require

that there are no poles within the region of interest and can

insure that by restricting m and n accordingly. Also, n

should be chosen as m+1 if we know that f(x) approaches 0

for large values of x. Finally, boundary conditions can be

implemented by simply adding sample values of x and f(x)

on the boundary to the training set.

Using a similar training set and the same function as

Murphy, Koehler, and Fogler [1997], I obtain an almost

perfect fit throughout the holdout set by using m=n=10, as

is shown in figure 1. Only a small discrepancy is noticeable

at the right boundary. In particular, this approach uses only

the training set repeatedly as m and n vary and then

performs only one final check against the holdout set.

3

EXHIBIT 1

FUNCTION: f(x) = sin(x) + sin(3x) + 0.6x

VS. PADE APPROXIMANT

0

2

4

6

8

0 2 4 6 8 10 X

f(X)
Function

Pade

This reply might serve as a cautionary tale that

mainstream methods for nonlinear problems can be very

useful. Jumping onto the bandwagon of implementing

neural nets would then require a careful assessment that

alternative methods are exhausted. However, from my own

research of notoriously nonlinear problems in the fields of

options and probability, I still have not reached that point.

4

References

Murphy, Christopher M., Gary J. Koehler, and H. Russell

Fogler. “Artificial Stupidity.” Journal of Portfolio

Management, Winter 1997, pp. 24-29.

Press, William H., Saul A. Teukolsky, William T.

Vetterling, and Brian P. Flannery. Numerical Recipes in

FORTRAN: the art of scientific computing, 2nd. Ed.

Cambridge: Cambridge University Press, 1992.

