Artificial Stupidity: A Reply

Murphy, Koehler, and Fogler [1997] gave in {ast
issue of thelournal of Portfolio Managemersn account of
how toraise a neural net’®). The purpose dhis reply is
to point out some of the general difficulties with neural nets.
Also, | would like to mention an alternative methadmely
Pade approximantswhich does notsuffer from these

difficulties.

Murphy, Koehler, and Fogler [1997] documehét
even approximating aather sinple nonlinearfunction in
one dimensionthroughneural nets requires a considerable
amount of fine-tuning. In particular, theye faced with a
time-consuming and complex algorithm where a number of
rather delicate parametdnave to be iteratively adjusted in
order toyield an acceptable neural net. A considerable
caveat is also that thevailabledatahas to be split further
into a training set (40 values in their example) ahdldout
set (160 values). Different neural nets are constructid)
the training set and then testaghinst the holdowget. This
methodology is inherently flawed sinceaithounts to an in-

sampletest. A trueout-of-sample procedure would require



to useonly the training set,decide on the best model, and
then check that model once agaitist holdout set.Given
the ratherpoor fit of their neuralnets on the boundaries,
even for their best model, thetrue out of sample

performance is questionable at best.

But at times going back tahe basics canyield
superior results. Murphy, Koehler, and Fogler [1997] rightly
notice that gpolynomial fitdoes poorly. Howevegven a
standard reference work such as “Numerical Recipes”, Press
et al. 1992, pp. 104-107, 194-201], suggests Pade
approximants (also known as rational functions
approximation) as the method of choice foonlinear
relations. The idea is to approximabe unknowrfunction

by the ratio of two polynomials:
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We can rewrite equation dlightly and immediately
see that thefollowing system of equations can be

conveniently solved by Ordinary Least Squares algorithms:
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The only choiceparameters here are thember of
terms, m and n. The easiest isstart with m=n=0 and
increase those values if the fit is insufficient. A useful tool is
to check for poles where f(xjoes toteco. We often require
that there are no polegthin the region of interest and can
insure that by restricting m and n accordingly. Also, n
should be chosen as m+1 if weow that f(x) approaches 0
for largevalues of x. Finally, boundary conditions can be
implemented by simply adding sample values of x and f(x)

on the boundary to the training set.

Using a similartraining setand thesame function as
Murphy, Koehler, and Foglef1997], | obtain analmost
perfectfit throughout the holdout set lmging m=n=10, as
is shown in figure 1. Qly a smalldiscrepancy is noticeable
at the right boundary. In particuldhjs approach usemly
the training set epeatedly as m and n vary and then

performs only one final check against the holdout set.



EXHIBIT 1
FUNCTION: f(x) = sin(x) + sin(3x) + 0.6x

VS. PADE APPROXIMANT
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This reply might serve as a cautionary tale that
mainstream method®r nonlinear problems can beery
useful. Jumpingonto the bandwagon ofimplementing
neural nets would then require a careful assessthat
alternative methods are exhausted. Howdvem my own
research of notoriously nonlinear problemghe fields of

options and probability, | still have not reached that point.
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